Prove that $\sqrt {\sec^2\theta + \csc^2\theta} $ = $ {\tan\theta + \cot\theta} $
Trigonometry (10)Prove that $\sqrt {\sec^2\theta + \csc^2\theta} $ = $ {\tan\theta + \cot\theta} $
Answer
$$ LHS = \sqrt {\sec^2\theta + \csc^2\theta} = \sqrt{1 + \tan^2\theta + 1 + \cot^2\theta}$$
$$= \sqrt{\tan^2\theta + \cot^2\theta + 2} = \sqrt{(\tan\theta + \cot\theta)^2}$$
$$ = \tan\theta + \cot\theta = (RHS) $$
    Exam Year: 
2018