PQRS is a cyclic quadrilateral. Given $ \angle QPS = 73^{\circ}, \angle PQS = 55^{\circ} $
Geometry (10)PQRS is a cyclic quadrilateral. Given $ \angle QPS = 73^{\circ}, \angle PQS = 55^{\circ} $ and $\angle PSR = 82^{\circ} $, calculate:
i. $\angle QRS $
ii. $\angle RQS $
iii. $\angle PRQ $

Answer

(opposite angles of a cyclic quadrilateral are supplementary)
i. $\angle QRS = 180^{\circ} – 73^{\circ} = 107$
ii. $\angle RQS = 180 – (82^{\circ} + 55^{\circ})$
= 180 – 137
= $43^{\circ}$
iii. $\angle PSQ = 180^{\circ} – (73^{\circ} + 55^{\circ})$
= $52^{\circ}$
∴ $\angle PRQ = \angle PSQ = 52^{\circ}$
(∠s in the same segment are equal)
Exam Year:
2018